Homeomorphisms of Compact Sets in Certain Hausdorff Spaces

نویسنده

  • Arthur D. Grainger
چکیده

In this paper, we construct a class of Hausdorff spaces with the property that nonempty compact subsets of these spaces that have the same cardinality are homeomorphic Theorem 3.7 . Conditions are given for these spaces to be compact Corollary 2.10 . Also, it is shown that these spaces contain compact subsets that are infinite Corollary 2.10 . This paper uses the Zermelo-Fraenkel axioms of set theory with the axiom of choice see 1–3 . We let ω denote the finite ordinals i.e., the natural numbers and N denotes the counting numbers i.e., N ω \ {0} . Also, for a given set X, we denote the collection of all subsets of X by P X , and we denote the cardinality of X by |X|. In other words, |X| is the smallest ordinal number for which a bijection of |X| onto X exists. In this paper, we will only consider compact topologies that are Hausdorff. A topology τ on a set X is compact if and only if A ⊆ τ and X ⊆ A imply X ⊆ ⋃nj 1 Uj for some n ∈ N and {U1, . . . , Un} ⊆ A. Therefore, compact topologies need not be Hausdorff.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Decomposition for Topologically Anosov Homeomorphisms on Noncompact and Non-metrizable Spaces

We introduce topological definitions of expansivity, shadowing, and chain recurrence for homeomorphisms. They generalize the usual definitions for metric spaces. We prove various theorems about topologically Anosov homeomorphisms (maps that are expansive and have the shadowing property) on noncompact and non-metrizable spaces that generalize theorems for such homeomorphisms on compact metric sp...

متن کامل

Course 421: Algebraic Topology Section 1: Topological Spaces

1 Topological Spaces 1 1.1 Continuity and Topological Spaces . . . . . . . . . . . . . . . 1 1.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Further Examples of Topological Spaces . . . . . . . . . . . . 3 1.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Hausdorff ...

متن کامل

Characterizing Continuous Functions on Compact Spaces

We consider the following problem: given a set X and a function T : X → X, does there exist a compact Hausdorff topology on X which makes T continuous? We characterize such functions in terms of their orbit structure. Given the generality of the problem, the characterization turns out to be surprisingly simple and elegant. Amongst other results, we also characterize homeomorphisms on compact me...

متن کامل

A new view on fuzzy automata normed linear structure spaces

In this paper, the concept of fuzzy automata normed linear structure spaces is introduced and suitable examples are provided. ;The ;concepts of fuzzy automata $alpha$-open sphere, fuzzy automata $mathscr{N}$-locally compact spaces, fuzzy automata $mathscr{N}$-Hausdorff spaces are also discussed. Some properties related with to fuzzy automata normed linear structure spaces and fuzzy automata $ma...

متن کامل

The Universal Minimal Space for Groups of Homeomorphisms of H-homogeneous Spaces

Let X be a h-homogeneous zero-dimensional compact Hausdorff space, i.e. X is a Stone dual of a homogeneous Boolean algebra. It is shown that the universal minimal space M(G) of the topological group G = Homeo(X), is the space of maximal chains on X introduced in [Usp00]. If X is metrizable then clearly X is homeomorphic to the Cantor set and the result was already known (see [GW03]). However ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011